KV Faridkot

XII MATHEMATICS

HOLIDAY HOMEWORK(TO BE DONE ON PRACTISE NOTEBOOK)

- 1. Let R be a relation on the set N be defined by $\{(x, y) \forall x, y \in \mathbb{N}, 2x + y = 1\}$ 41 }. Then, R is
 - a. (a) Reflexive (b) Symmetric (c) Transitive (d) None of these
- 2. For real numbers x and y, we write x R y \leftrightarrow x y + $\sqrt{2}$ is an irrational number. Then, the relation R is
 - (a) Reflexive (b) Symmetric (c) Transitive (d) None of these
- 3. The relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ on set $A = \{1, 2, 3\}$ is
 - (a) Reflexive but not symmetric
 - (b) Reflexive but not transitive
 - (c) Symmetric and transitive
 - (d) Neither symmetric nor transitive
- 4. Consider the non-empty set consisting of children in a family and a relation R defined as a R b if a is brother of b. Then R is
 - (a) symmetric but not transitive
 - (b) transitive but not symmetric
 - (c) neither symmetric nor transitive
 - both symmetric and transitive
- 5. Let $P = \{(x, y) : x^2 + y^2 = 1, x, y \in R\}$. Then, P is
- 6. Reflexive (b) Symmetric (c) Transitive (d) Anti-symmetric
- 7. Let S be the set of all real numbers. Then, the relation
 - $R = \{(a, b) : 1 + ab > 0\} \text{ on S is }$
 - (a) Reflexive and symmetric but not transitive
 - (b) Reflexive and transitive but not symmetric
 - Symmetric, transitive but not reflexive (c)
 - (d) Reflexive, transitive and symmetric
- 8. Let R be the relation in the set Z of all integers defined by
 - $R = \{(x, y) : x y \text{ is an integer}\}$. Then R is
- 9. reflexive (b) symmetric (c) transitive (d) an equivalence relation
- For the set $A = \{1, 2, 3\}$, define a relation R in the set A as follows 10. $R = \{(1, 1), (2, 2), (3, 3), (1, 3)\}$ Then, the ordered pair to be added to R to make it the smallest equivalence relation is
 - a. (a) (1, 3)
- (b) (3, 1) (c) (2, 1)
- (d)(1,2)

25.	The function $f: R \to R$ defined by $f(x) = a$. (a) one-one but not onto					
26.	(c) both one-one and onto	(d) neither one-one nor onto				
27.	If $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = I_2$, then A=	r0 17				
	a. (a) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$	$ (d) \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} $				
28.	If $A = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$, then $(A^{-1})^3$ is equal to	r1 261				
	a. $(a)^{\frac{1}{27}} \begin{bmatrix} 1 & -26 \\ 0 & 27 \end{bmatrix}$ $(b)^{\frac{1}{27}} \begin{bmatrix} 1 & 26 \\ 0 & 27 \end{bmatrix}$ $(c)^{\frac{1}{27}} \begin{bmatrix} -1 & -26 \\ 0 & -27 \end{bmatrix}$	$\begin{bmatrix} 1 & -26 \\ 0 & -27 \end{bmatrix}$				
29.	If $A = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$ and $A^{-1} = mA$, then m is equal	al to				
20	a. (a)-1/6 (b)1/3 (c)-1/3					
30.	If I_3 is the identity matrix of order 3,the					
	a. (a)O (b) $3I_3$ (c) I exist	(d)Not necessarily				
31.	If A and B are 2 non-zero matrices such	that AB=0,then				
	(a)both A and B are singular					
22	(c)neither of them is singular	(d)none of these				
32.	If A is a singular matrix then A.adjA = (a)is a scalar matrix (b)is a ze	ero matrix				
	(c) is an identity matrix (d)n					
33.	For how many integral values of x in the					
\[\rac{1}{2}	$\begin{bmatrix} 3 & -x-1 & 2 \\ 3 & -1 & x+2 \\ +3 & -1 & 2 \end{bmatrix}$ is singular?					
LA	(a) Zero (b) 2 (c) 1	(d) 3				
34. If A and B are square matrices of sixe nXn, such that $A^2-B^2=(A+B)(A-B)$, then which one of the following is always true-						
(a)AB=BA (b) either of A or B is a zero matrix						
(c) Either of A or B is an identity matrix (d) A=B						
35. If $[a_{ij}]_{nxn}$ be a diagonal matrix with diagonal element all different and						
$B = [\ b_{ij}]_{nxn}$ be some matrix .Let $AB = [\ c_{ij}]_{nxn}$,then c_{ij} is equal to						
	$a_{jj}b_{ij}$ (b) $a_{ii}b_{ij}$ (c) $a_{ij}b_{ij}$					
36.	36. If A is a skew matrix of odd order, then $ adjA $ is equal to					

(a) (0(b) n	(c) n^2		(d) none of these		
				where I is the identi	ty matrix. If	
	=5I-8P, the					
(a) 4	4(b) 5	(c) 6	(d) 7			
38.	If $A = \begin{bmatrix} 4 \\ 2x - \end{bmatrix}$	$\begin{bmatrix} x+2\\ x+1 \end{bmatrix}$ is	symmetric ,th	en x=		
			(d) 4			
39.	If A is 3X4	1 matrix and	B is a matrix	such that A'B and BA	' are defined,	
ther	n B is of the	type				
(a)3	8X 4		• •	(4 (d) 4X3		
		CA	SE STUDY Q	JESTIONS		
the the play A={	dice, Aman throw ever ers while B	's sister Lata y time belon be the set o	observed and gs to set {1,2 of all possible of	ome during Covid-19.d noted the possible of ,3,4,5,6}.Let A be the outcomes. Let rmation given above,	outcomes of e set of	
(i)Let	$R:B\rightarrow B$ be	defined by R	$R = \{(x,y): y =$	x}is		
(a) (b) (c) (d)	(b) Reflexive and symmetric but not transitive(c) Reflexive but not symmetric and transitive					
(ii) Le R is	t R :B→B b	e defined by	R={(1,2)(2,2)(1,3)(3,4)(3,1))(4,3)(5,5)}.Then	
(a)Sym	nmetric		(b) R	eflexive		
(c) Tra			` '	None of these three		
. ,		oe defined by 3,3)(4,4)(5,	y 5)(6,6)},then	R is		
` , ,	nmetric tive and syr	nmetric	` '	deflexive and Transitivalence	/e (c)	
• •	ita wants to ations are p		umber of rela	cions possible from A	to B .How	
(a)36		(b) 64	(c) 6!	(d) 2 ¹²	!	

(v) Lata wants to know the number of functions from A→B, How many numbers of functions are possible?							
(a)36	(b) 64	(c) 6!	(d) 2 ¹²				
2.A Robot works on the software which follows function $f(x) = \frac{x-2}{x-1}$. If the value of domain is put in place of x. This robot works and performs various works. Based on the above in information, answer the following:							
(i) What will the value/values of \boldsymbol{x} ,on which this robot works							
(a)On all real va	ılues	(b)On all real va	alues except 1				
(c)On all real va	lues except 2	(d)On all real va	alues except {1,2}				
(ii) If range denotes the number of works performed, then range of the works performed will be							
(a) $R - \{1\}$	(t	$(R - \{2\})$					
(c) $R - \{1,2\}$		(d)On all real va	alues				
(iii) If this function is defined from $f:R-\{1\} \rightarrow R-\{1\}$							
(a)Injective		(b) Surjective					
(c)Bijective	(d) Into					
(iv) If a Robot follows the $f:R-\{1\}\rightarrow R$, then $f(x)$ is							
(a)Injective		(b) Surjective					
(c)Bijective	(d) Into					
(v) If a Robot follows the $f:N-\{1\}\rightarrow R-\{1\}$, then $f(x)$ is							
(a)Injective		(b) Surjective					
(c)Bijective	(d) Into					
Revise chapter No. 1,2,3 from Ncert textbook and examplar.							