KV Faridkot

XII MATHEMATICS

HOLIDAY HOMEWORK(TO BE DONE ON PRACTISE NOTEBOOK)

1. Let R be a relation on the set N be defined by $\{(x, y) \forall x, y \in N, 2 x+y=$ 41\}. Then, R is
a. (a) Reflexive (b) Symmetric (c) Transitive (d) None of these
2. For real numbers x and y, we write $x R y \leftrightarrow x-y+\sqrt{2}$ is an irrational number. Then, the relation R is
(a) Reflexive (b) Symmetric (c) Transitive (d) None of these
3. The relation $R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$ on set $A=\{1,2,3\}$ is
(a) Reflexive but not symmetric
(b) Reflexive but not transitive
(c) Symmetric and transitive
(d) Neither symmetric nor transitive
4. Consider the non-empty set consisting of children in a family and a relation R defined as $a R b$ if a is brother of b. Then R is
(a) symmetric but not transitive
(b) transitive but not symmetric
(c) neither symmetric nor transitive
(d) both symmetric and transitive
5. Let $P=\left\{(x, y): x^{2}+y^{2}=1, x, y \in R\right\}$. Then, P is
6. Reflexive (b) Symmetric (c) Transitive (d) Anti-symmetric
7. Let S be the set of all real numbers. Then, the relation

$$
R=\{(a, b): 1+a b>0\} \text { on } S \text { is }
$$

(a) Reflexive and symmetric but not transitive
(b) Reflexive and transitive but not symmetric
(c) Symmetric, transitive but not reflexive
(d) Reflexive, transitive and symmetric
8. Let R be the relation in the set Z of all integers defined by
$R=\{(x, y): x-y$ is an integer $\}$. Then R is
9. reflexive (b) symmetric (c) transitive (d) an equivalence relation
10. For the set $A=\{1,2,3\}$, define a relation R in the set A as follows $R=\{(1,1),(2,2),(3,3),(1,3)\}$ Then, the ordered pair to be added to R to make it the smallest equivalence relation is
a. (a) $(1,3)$
(b) $(3,1)$
(c) $(2,1)$
(d) $(1,2)$
11. Let $A=\{1,2,3\}$ and $R=\{(1,2),(2,3)\}$ be a relation in A. Then, the minimum number of ordered pairs may be added, so that R becomes an equivalence relation, is
a. (a) 7
(b) 5
(c) 1
(d) 4
12. Let $A=\{1,2,3\}$. Then, the number of relations containing $(1,2)$ and $(1$, 3), which are reflexive and symmetric but not transitive, is
a. (a) 1
(b) 2
(c) 3
(d) 4
13. Let $f: R \rightarrow R$ be a function defined by $f(x)=x^{3}+4$, then f is
a. (a) Injective
(b) Surjective
(c) Bijective
(d) None of these
14. Let $X=\{0,1,2,3\}$ and $Y=\{-1,0,1,4,9\}$ and a function $f: X \rightarrow Y$ defined by $y=x^{2}$, is
15. one-one onto (b) one-one into (c) many-one onto (d) many-one into
16. Let $g: R \rightarrow R g(x)=x^{2}-4 x-5$, then
17. g is one-one on R
(b) g is not one-one on R
18. g is bijective on R
(d) None of these
19. The mapping $\mathrm{f}: \mathrm{N} \rightarrow N$ given by $\mathrm{f}(\mathrm{n})=1+n^{2}, \mathrm{n} \in \mathrm{N}$ when N is the set of natural numbers, is
20. The function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=x^{3}-1$ is
a. (a) a one-one function
(b) an onto function
b. (c) a bijection
(d) neither one-one nor onto
21. A function $f: X \rightarrow Y$ is said to be onto, if for every $y \in Y$, there exists an element x in X such that
a. (a) $f(x)=y$
(b) $f(y)=x$
(c) $f(x)+y=0$
(d) $f(y)+x=$ 0
22. Let R be the relation in the set $\{1,2,3,4\}$ given by $R=\{(1,2),(2$, $2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$.
(a) R is reflexive and symmetric but not transitive
(b) R is reflexive and transitive but not symmetric
(c) R is symmetric and transitive but not
(d) R is equivalence relation
23. Let $A=\{1,2,3\}$ and $B=\{a, b, c\}$, then the number of bijective functions from A to B are
a. (a) 2
(b) 8
(c) 6
4
24. The number of surjective functions from A to B where $A=\{1,2,3,4\}$ and $B=\{a, b\}$ is
a. (a) 14
(b) 12
(c) 2
(d) 15
25. The function $f: R \rightarrow R$ defined by $f(x)=(x-1)(x-2)(x-3)$ is
a. (a) one-one but not onto
(b) onto but not one-one
26.
(c) both one-one and onto
(d) neither one-one nor onto
27. If $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \mathrm{A}\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=I_{2}$, then $\mathrm{A}=$
a. (a) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
28. If $\mathrm{A}=\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$, then $\left(A^{-1}\right)^{3}$ is equal to
$\begin{aligned} \text { a. (a) } \frac{1}{27}\left[\begin{array}{cc}1 & -26 \\ 0 & 27\end{array}\right] & \text { (b) } \frac{1}{27}\left[\begin{array}{ll}1 & 26 \\ 0 & 27\end{array}\right]\end{aligned} \quad$ (c) $\frac{1}{27}\left[\begin{array}{l}1 \\ 0\end{array}\right.$
a. (a) $-1 / 6$
(b) $1 / 3$
(c) $-1 / 3$
(d) $1 / 6$
30. If I_{3} is the identity matrix of order 3 , then $I_{3}{ }^{-1}=$
a. (a) O
(b) $3 I_{3}$
(c) I_{3}
(d)Not necessarily
exist
31. If A and B are 2 non-zero matrices such that $A B=0$, then
(a)both A and B are singular
(b)either of them is singular
(c)neither of them is singular
(d) none of these
32. If A is a singular matrix then $\mathbf{A} \cdot \operatorname{adj} \mathbf{A}=$
(a)is a scalar matrix
(b)is a zero matrix
(c) is an identity matrix
(d)none of these
33. For how many integral values of x in the closed interval [-4,-1], matrix
$\left[\begin{array}{ccc}3 & -x-1 & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]$ is singular?
(a) Zero
(b) 2
(c) 1
(d) 3
34. If A and B are square matrices of sixe $n X n$, such that $A^{2}-B^{2}=(A+B)(A-$ $B)$,then which one of the following is always true-
(a) $A B=B A$
(b) either of A or B is a zero matrix
(c) Either of A or B is an identity matrix (d) $A=B$
35. If $\left[a_{i j}\right]_{n x n}$ be a diagonal matrix with diagonal element all different and $\mathrm{B}=\left[b_{i j}\right]_{n x n}$ be some matrix .Let $\mathrm{AB}=\left[c_{i j}\right]_{n x n}$, then $c_{i j}$ is equal to
a) $a_{j j} b_{i j}$
(b) $a_{i i} b_{i j}$
(C) $a_{i j} b_{i j}$
(d) $a_{i j} b_{j i}$
36. If A is a skew matrix of odd order, then $|\operatorname{adj} A|$ is equal to
(a) 0 (b) n
(c) n^{2}
(d) none of these
37. A square matrix P satisfies $P^{2}=I-P$ where I is the identity matrix. If $P^{n}=5 I-8 P$, then $n=$
(a) 4 (b) 5
(c) 6
(d) 7
38. If $\mathrm{A}=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]$ is symmetric , then $\mathrm{x}=$
(a) 3 (b) 5
(c) 2
(d) 4
39. If A is $3 X 4$ matrix and B is a matrix such that $A^{\prime} B$ and $B A^{\prime}$ are defined, then B is of the type
(a)3X 4
(b) 3×3
(c) $4 X 4$
(d) 4×3

CASE STUDY QUESTIONS

1. Aman and Ramesh are playing Ludo at home during Covid-19. While rolling the dice, Aman's sister Lata observed and noted the possible outcomes of the throw every time belongs to set $\{1,2,3,4,5,6\}$. Let A be the set of players while B be the set of all possible outcomes. Let
$A=\{A, R\}, B=\{1,2,3,4,5,6\}$. Using the information given above, answer the following:
(i)Let $R: B \rightarrow B$ be defined by $R=\{(x, y): y=x\}$ is
(a) Reflexive and transitive but not symmetric
(b) Reflexive and symmetric but not transitive
(c) Reflexive but not symmetric and transitive
(d) Equivalence
(ii) Let $R: B \rightarrow B$ be defined by $R=\{(1,2)(2,2)(1,3)(3,4)(3,1))(4,3)(5,5)\}$. Then R is
(a)Symmetric
(b) Reflexive
(c) Transitive
(d) None of these three
(iii) Let $\mathrm{R}: \mathrm{B} \rightarrow \mathrm{B}$ be defined by
$R=\{(2,1)(1,2)(2,2)(3,3)(4,4)(5,5)(6,6)\}$, then R is
(a)Symmetric

Transitive and symmetric
(b) Reflexive and Transitive
(d) Equivalence
(iv) Lata wants to know the number of relations possible from A to B.How many relations are possible?
(a)36
(b) 64
(c) 6 !
(d) 2^{12}
(v) Lata wants to know the number of functions from $A \rightarrow B$, How many numbers of functions are possible?
(a) 36
(b) 64
(c) 6 !
(d) 2^{12}
2.A Robot works on the software which follows function $f(x)=\frac{x-2}{x-1}$. If the value of domain is put in place of x.This robot works and performs various works. Based on the above in information, answer the following:
(i) What will the value/values of x ,on which this robot works
(a)On all real values
(b)On all real values except 1
(c)On all real values except 2
(d)On all real values except $\{1,2\}$
(ii) If range denotes the number of works performed, then range of the works performed will be
(a) $R-\{1\}$
(b) $R-\{2\}$
(c) $R-\{1,2\}$
(d)On all real values
(iii) If this function is defined from $\mathrm{f}: \mathrm{R}-\{1\} \rightarrow R-\{1\}$
(a)Injective
(b) Surjective
(c)Bijective
(d) Into
(iv) If a Robot follows the $\mathrm{f}: \mathrm{R}-\{1\} \rightarrow R$, then $\mathrm{f}(\mathrm{x})$ is
(a)Injective
(b) Surjective
(c)Bijective
(d) Into
(v) If a Robot follows the $\mathrm{f}: \mathrm{N}-\{1\} \rightarrow R-\{1\}$, then $\mathrm{f}(\mathrm{x})$ is
(a)Injective
(b) Surjective
(c)Bijective
(d) Into

Revise chapter No. 1,2,3 from Ncert textbook and examplar.

